

Perspectives on Operational Requirements and Vulnerability Reduction

ADPA Symposium, Naval Postgraduate School October 21, 1997

Major General Fred McCorkle, USMC CG, 3D MAW

 Susceptibility is an operational construct
 Vulnerability is a design and programmatic construct

Fiscal Realities

In programmatic, material terms, Vulnerability reduction is a function of design and retrofit dollars available

Backdrop Assumptions

The Marine Corps Aviation
Combat Element (ACE) of the near
term will be characterized by a
"mature" assault support fleet of
legacy aircraft that will still be
operating 2010-2020

Backdrop Assumptions

Threat proliferation trends will continue, with anti-aircraft weaponry expanding throughout ■ the littoral battlespace Any weapon, anti-air or not, can kill USMC aircraft, given the right conditions

Waterfowl have at least 7 recorded kills

Backdrop Assumptions

- The past, current, and future threats are ones which capitalize on some of our historical vulnerabilities:
 - **▶ IR hotspots**
 - Aircrew safety
 - Intelligence gaps
 Cultural Character (TRAP, NEO, etc)

Operational Realities

The pace of technological change has far exceeded that of vulnerability reduction

The MV-22 of 2020 will continue to be vulnerable in some of the same ways as the CH-46 of 1965

Operational Realities (cont'd)

Predicted operational tempos do not offer any relief from being exposed to increasing numbers of threats, especially in the urban environment

Operational Perspectives

For our present aircraft, vulnerability quotients will outpace reduction efforts as weapons become both more prevalent and accurate

Operational Perspective

Those factors which highlight present aircraft vulnerability are largely immutable:

- Cannot select operating environment
- Cannot preclude all weapon engagements
- Cannot protect against every weapon
 Multi-mission optimization has its costs...

Design and Programmatics

From the aspect of aircraft design and program management, actions which effect fleet aircraft vulnerability are addressable from this point <u>forward</u>.

Retrofit is not a salable option

Present Efforts

■F/A-18 C/D Hornet

- Fuel System
 - Fuel isolation from engines
 - Fuel tank hydraulic ram
 - Self-sealing feed tanks and engine feed lines
 - Void filler foam for dry by fire protection below fuselage tanks
 - Wing tank unexpended fuel explosion protection
- Flight Control System
 - Redundant separated hydraulics
 - Rip stop actuators, Hydraulic reservoir level sensing
 - Redundant flight control conputers
 - Mechanical backup
- Propulsion System
 - Fire detection and extinguishing system
 - Blade containment measures

■No improvements planned

Present Efforts (cont'd)

_AV-8B (Day and Reman A/C)

No improvements planned

EA-6B

Blk 89A Halon fire extinguisher

KC-130F/R/T

No improvements planned

Present Efforts (cont'd)

CH-46

- Self-sealing fuel tanks
- No improvements planned CH-53D/E
 - Self-sealing fuel tanks
- No improvements planned UH-1N/4BN//AH-1W/4BW

No improvements planned

Future Efforts

■ MV-22

- Systems Protection
 - Armor
 - System Isolation
 - System Redundancy
 - System Separation
- Ballistic tolerance
 - Engine Fire Suppression
 - Nitrogen Inerted Fuel Tanks
 - Self-sealing Fuel Bladders
 - Hydraulic Ram Protection
 - Dry Bay Fire Protection
 - Composite Structure
 - Capability vs. 23mm API (threshold = 12.7 mm)

Future Efforts (cont'd)

KC-130J

Reticulated Wing Tank Foam

Approximately 80% improvement in vulnerability reduction

Data bus wiring

Reduces wiring bundling throughout aircraft

Conclusion

- Future design goals make appropriate and overdue reductions in aircraft vulnerabilities
- Current aircraft will continue to present challenges for vulnerability reduction efforts

Backup slides follow.....

The Reality of USMC Operations

- Operational Maneuver from the Sea
- USMC must be "Ready on Arrival"
- The Battlespace may be immature
- Close proximity to the threat
- Threats cover all spectra (RF, IR, Visual, Acoustic)

USMC Operations Expeditionary

Immature Battlefield

- ■Intelligence capabilities not fully deployed
- Dominant battlefield knowledge not fully developed

Come as you are, Fight as you train

Expeditionary Operations

- Aircraft
 - Maintainable
 - Repairable
 - Small logistical tail
 - High sortie rate
 - minimum maintenance
 - Multi mission profile

- **■**Mission
 - Dynamic, fluid threat
 - Proximity to threat
 - Min. reaction time
 - Low J/S strength
 - EOB inaccuracies
 - Exposure time
 - 24 hour operations
 - All spectrum threats

The Future

Support

130J

Rotary Wing Lift **Rotary Wing Attk JRA**

Fixed Wing Attk AV-8B+F-18C/D = JSF EA-6B+C-130 = EA + C-

> CH-46+CH-53 = V-22UH-1N+AH-1W = 4BN + 4BW =

Force Mix Challenges Technology

Factors Affecting Investment Strategy

- **■** Lack of independent resources
- **■**Unique requirements
- **■**Small force

Major Investments made by others